
Influence branching for learning to solve mixed
integer programs online

Report for the MIP Workshop 2023 Computational
Competition

Paul STRANG1,2, Zacharie ALES2,4, Côme BISSUEL3, Olivier JUAN3, Safia
KEDAD-SIDHOUM4, Emmanuel RACHELSON1

1 ISAE-SUPAERO, Toulouse, France
2 ENSTA Paris, Institut Polytechnique de Paris, France

3 EDF R&D, France
4 CNAM Paris, CEDRIC, France

Abstract. On the occasion of the 20th Mixed Integer Program Work-
shop’s computational competition, this work introduces a new approach
for learning to solve MIPs online. Influence branching, a new graph-
oriented variable selection strategy, is applied throughout the first it-
erations of the Branch & Bound algorithm. This branching heuristic is
optimized online with Thompson sampling, which ranks the best graph
representations of MIP’s structure according to computational speed up
over SCIP. We achieve results comparable to state of the art online learn-
ing methods. Moreover, our results indicate that our method generalizes
well to more general online frameworks, where variations in constraint
matrix, constraint vector and objective coefficients can all occur and
where more samples are available.

Keywords: Mixed integer programming · Online learning · Branch &
Bound · Influence branching · Multi-armed bandit

1 Introduction

Mixed Integer Programming (MIP) is a subfield of combinatorial optimization,
a discipline that aims at finding solutions to optimization problems with large
but finite sets of feasible solutions. Research in the field has been in particular
motivated by the countless industrial applications that can be derived in decision
making and operations research. Mixed integer program solvers developed over
the last decades have relied on the Branch and Bound (B&B) algorithm [Wol20]
to efficiently explore the space of solutions while guaranteeing the optimality of
the returned solution. Despite great discoveries in variable selection [AKM05],
node selection and cuts selection strategies, along with progress in the concep-
tion of primal heuristics and presolve methods [Bes+21], MIPs remain NP-hard
problems for which computational load becomes intractable as the number of in-
teger variables increases. Besides, the most efficient selection strategies are based

2 P. Strang et al.

on complex heuristics fine-tuned by experts on large MIP datasets to obtain the
best average performance. In the context of real-world applications, in which
similar instances with slightly varying inputs are solved on a regular basis, there
is a huge incentive to reduce the solving time by learning efficient tailor-made
heuristics.
The MIP Workshop 2023 Computational Competition challenges participants to
solve as fast as possible series of 50 MIP instances with slightly varying input,
in an online fashion. In this work, we adopt machine learning’s statistical point
of view and think of each series s ∈ S as a set of 50 instances sampled from an
unknown probability distribution Qs. Building on prior works [Lib+16; Eth21;
Chm+22], we reformulate MIPcc23’s reoptimization challenge as a multi-armed
bandits problem, where the reward score fs,i(a) associated to instance i ∈ Is,
is assumed to follow an unknown distribution Pa, s depending on a ∈ A, the
algorithm chosen to solve i. Then,

∑50
i=1 fs,i(ai) is the sum of the rewards to

minimize for each s ∈ S, as to our designated action space, A, it consists in
the set of hyperparameters couples used to parameterize our new variable se-
lection strategy. SCIP with default parameters [Bes+21] is used as bedrock for
our solution, while the implementation of our branching heuristic follows the
pyscipopt.Branchrule API.
This report is divided into 6 parts. In Section 2, we motivate our approach by
a short review of both the literature and the competition’s guidelines. Section 3
introduces influence branching, a new branching heuristic that leverages a graph
representation of the current instance to select the most influential variable to
branch on. Section 3 also highlights influence branching’s speed up potential on
the competition’s instances, before underlining its sensitivity to hyperparame-
ters tuning. This sensitivity justifies the need to learn online the best parameters
for each series of instances. Section 4 briefly introduces the two online bandits
algorithms considered to learn hyperparameters, and compare their average per-
formances in terms of convergence. Section 5 provides an extensive presentation
of computational results obtained on the competition’s public instance series.
Finally, Section 6 concludes on the relevance of our approach for learning to
solve mixed integer programs online.

2 Background

Over the last decade, the field of machine learning has brought many contri-
butions to the MIP literature [Hua+21; BLP21]. Learning to cut [Hua+22;
TAF20], learning to branch [ALW14; Kha+16; Eth+20], learning to select heuris-
tics [Lib+16; Chm+22] or learning to estimate solutions efficiently [RAD10] are
as many challenging tasks that the machine learning community has tried to
address. However, the profile of the instances proposed by MIPcc23 along with
specific requirements imposed by the competition’s guidelines allow us to nar-
row the pool of promising approaches. The most binding requirement of the
competition is undoubtedly its search for solutions that ”work in practice”. In
fact, most contributions from the literature do not achieve better computational

Influence branching for learning to solve mixed integer programs online 3

performances than state of the art solvers, and compare their solution to solvers
with for example disabled presolve and cut generation plugins, in order to eval-
uate the speed up obtained by their sole input. In these conditions, works such
as [Gas+19], who achieved true state of the art performances on large MIP
benchmarks by learning to imitate the strong branching strategy [App+95], ap-
pear promising. However, this achievement was made possible by the training
of a large graph convolutionnal neural network on 100,000 samples drawn from
10,000 MIP instances. Such heavy computational work is not suited for our on-
line setting, where every computation is the result of a trade off between learning
a model and solving an instance.
Turning to the competition’s public series, apart from the rhs 2 series, instances
are rather hard to solve, leading to B&B trees with at least 10,000 nodes and
often much more. Thus, machine learning and in particular reinforcement learn-
ing approaches do not seem fitted for the challenge as they tend to scale poorly
with dimension [Eth+20; Sca+22]. Finally, given the high rate at which SCIP
computes LP iterations, a lot of time would probably be lost in communication
if we were to implement a python callback for every branching decision, i.e. at
every node.
For all these reasons, the MIPcc23 competition constitutes a challenging setup
to apply branching strategy learning methods. In order to give the machine
learning approach a chance to compete, the learning objective must be rational-
ized. Therefore, we propose to focus on learning graph representations leading
to better branching decision near the root node, throughout the first iterations
of the branch-and-bound algorithm. These graph representations, or influence
models, and the maximal depth to apply our graph-based heuristic, are the two
hyperparameters that will be optimized online with bandits algorithms.

3 Influence branching

We introduce influence branching, a graph branching heuristic encoding part of
the mixed integer program structure into an influence graph which is then used
for variable selection. Original works from [Eth21] evidenced influence branch-
ing’s great potential for tree size reduction, especially on hard instances. We
provide an adapted version of this heuristic, which achieves better performances
on the competition’s instances.

3.1 Principle

Influence branching was first inspired by orbital branching [Ost+11], a branching
strategy that computes symmetry equivalent groups of variables to partition the
search space into orbits. Similarly, influence branching as described by [Eth21],
performs a clustering on an influence graph, a graph representation of the MIP
instance, and splits variables into influence clusters. These clusters are then
used by the brand-and-bound algorithm for variable selection, as it successively

4 P. Strang et al.

branches on each cluster throughout first iterations. In the following, we consider
a mixed integer linear program defined such as:

P :

{
min cTx

b− ≤ Ax ≤ b+ ; x ∈ IN|I| × IRn−|I|

with A ∈ IRm×n, b−, b+ ∈ IRm, c ∈ IRn, n the total number of variables, m the
number of linear constraints and I the indexes of integer variables.

Definition 1. (Local influence) We define the local influence wl
ij exerted by

variable i on variable j through constraint l. wl
ij can be any function of A,

b, c, in particular, we say that i has a non-zero influence on j through l if
1Ali ̸=01Alj ̸=0 ̸= 0.

Definition 2. (Direct influence) We define the direct influence wij exerted by
variable i on variable j over P as :

wij = 1i ̸=j

m∑
l=1

wl
ij

We can then derive a definition for influence graphs.

Definition 3. (Influence graph) We call influence graph the directed graph G =
(V,E,W) where V = {1, ..., n}, E = V × V and where W ∈ IRn×n the wij

matrix satisfies the definition of direct influence.

Near the root node, taking the best branching decision does not necessarily mean
branching on variables that will lead to the best immediate dual gap reduction,
but rather means branching on variables that will have the most impact over
the other variables in terms of integrity constraints. Therefore, influential vari-
ables are understood as variables which, when branched on, drive other variables
to take the value of one of their bounds. Several factors making a variable in-
fluential are identified: being involved in a large number of constraints, being
associated in average to larger constraint matrix coefficients, being involved in
tight constraints or having large associated objective function coefficient.
Influence graphs are designed to capture maximum information from MIP in-
stances’ structure. We propose to evaluate the performance of several models of
influence on the competition’s public series, using A, b, c as well as information
extracted from the current LP iteration to define local influence. Influence mod-
els description can be found in Table 1. Although vectors b and c do not appear
in the definition of local influence, they are used for the normalization of matrix
A which will be detailed in the next section.

3.2 Adaptation to MIPcc23

Contrary to [Eth21], we do not perform a spectral clustering on the influence
graph. Our implementation of the influence branching heuristic returns the vari-
able within the graph with the maximal total influence :

wi =
√
1 + ci

∑
j ̸=i

wij(g) (1)

Influence branching for learning to solve mixed integer programs online 5

Count wl
ij = 1Ali1Alj

Binary wl
ij =

1Ali
1Alj∑m

k=1
1Aki

1Akj

Dual wl
ij = 1Ali1Alj |y

∗
l |

Countdual wl
ij = 1Ali1Alj 1(yl

∗ ̸=0)

Auxiliary wl
ij = 1Ali1Alj si|Aliyl|

Adversarial wl
ij = 1Ali1Alj si|

Ali
Alj

|1(yl
∗ ̸=0)

Table 1. Proposed influence models, with y∗ the solution of the dual problem at the
current node and si the minimal distance to a bound for variable i in the primal
solution. 1Ali ̸=0 is noted 1Ali to ease the notations.

as long as the depth of the current node d is inferior or equal to k, the maxi-
mum depth. Moreover, variables’ total influence are weighted according to their
associated objective function coefficient ci. For nodes of depth d > k, influence
branching is disabled and the resolution of the MIP instance is handed over to
SCIP set with default parameters. Before building the influence graph, a nor-
malization of vectors A, b and c is carried out in order to make the matrix W
invariant to problem rescaling.

c← c/σ(c) if σ(c) ̸= 0

Ak ← Ak/bk if bk ̸= 0

Ak ← Ak/σ(Ak) if bk = 0

(2)

with vector b ∈ IRm defined as bk = 1|b+k |<∞b+k − 1|b−k |<∞b−k for k ∈ [1, m].

On hard instances, influence branching can achieve impressive speed up of solving
time compared to state of the art solvers. Table 2 provides the influence model
g and the maximal depth k obtaining the best performance for each instance of
obj series 2. As Table 2 highlights, the speed up potential of influence branch-
ing is significant, with an average speed up of -0.38 on obj series 2 instances
compared with default SCIP performances. However, Table 2 also exposes in-
fluence branching’s extreme sensitivity to hyperparameters setting, as no pair
(g, k) appears to perform consistently better on every instance of the series.

Learning which pair (g, k) performs best for any instance of any series would
require to shift to a reinforcement learning framework, which would be both
computationally unaffordable in the context of the competition, and theoreti-
cally challenging as it would require to find an efficient representation of MIP
instances. Therefore, we adopt an online bandits framework, as we try to learn
which pair (g, k) obtains the best performance in average on a whole series of
instances. The sorted average performance obtained by each pair (g, k) on obj
series 2 is provided in Table 3. The average speed up obtained by the best pairs
are promising enough to envisage online learning. Equivalent tables for the other
series can be found in Appendix A.

6 P. Strang et al.

Instance
Influence Max

Performance
SCIP Speed

model depth default up

1 binary 5 0.64 0.70 -0.06
2 adversarial 5 0.53 1.01 -0.48
3 countdual 5 0.49 0.60 -0.11
4 count 4 0.48 0.76 -0.28
5 countdual 2 0.70 1.03 -0.33
6 count 4 0.26 0.44 -0.18
7 auxiliary 3 0.42 0.53 -0.11
8 countdual 2 0.71 0.98 -0.37
9 countdual 4 0.57 1.39 -0.82
10 auxiliary 1 0.35 1.00 -0.65
11 binary 3 0.67 1.53 -0.86
12 dual 1 0.84 1.19 -0.35
13 count 3 0.24 0.45 -0.21
14 binary 1 0.40 0.64 -0.24
15 countdual 3 0.80 1.21 -0.41
16 auxiliary 1 0.74 1.51 -0.77
17 binary 1 0.87 1.21 -0.34
18 countdual 3 0.68 0.76 0.08
19 binary 1 0.28 0.45 -0.17
...
50 binary 5 0.29 0.66 -0.34

Avg 0.56 0.94 -0.38

Table 2. Speed up potential of Influence branching on obj series 2. The performance
column corresponds to fs, i = reltime + gap at time limit + nofeas, while speed up
indicates the performance gain obtained by influence branching compared to SCIP
set with default parameters. To illustrate, for instance 2 the pair leading to the best
performance of influence branching is (g = adversarial, k = 5).

Influence model Max depth Performance Speed up Rank

count 5 0.857 -0.0862 1
base 6 0.865 -0.0783 2

countdual 2 0.874 -0.0691 3
base 5 0.877 -0.0657 4
count 4 0.882 -0.0606 5
...

adversarial 3 0.953 0.0520 34
adversarial 2 0.973 0.0721 35
auxiliary 5 1.05 0.148 36

Table 3. Sorted average performance of influence branching on obj series 2 for each
pair (g, k). The performance column corresponds to the mean of fs, i = reltime +
gap at time limit + nofeas over Is, while speed up indicates the average performance
gain obtained by influence branching compared to SCIP set with default parameters.

Influence branching for learning to solve mixed integer programs online 7

4 Online bandits

As outlined in Sections 1 and 3, instances from series s ∈ S are assumed to be
sampled from an abstract distribution Qs on the space of MIP instances, and
scores {fs, i(a)}i∈Is

with a ∈ A = {(g, k) : g ∈ G, k ∈ [1, 6]} are assumed to
follow an unknown probability distribution Pa, s. The optimization task can be
reformulated as a multi-armed bandits problem on action space A where

min
ai∈A

50∑
i=1

(1 + 0.1i) fs, i(ai) (3)

is the sum of reward to minimize. We note a∗s the optimal action for series s,
and a0 the action corresponding to SCIP with default parameter.

4.1 Action space

For each series, only 50 samples are available in total. In order to minimize (3),
the means of (Pa, s)a∈A, noted (µa, s)a∈A, need to be estimated (or at least
ranked) as efficiently as possible for the heuristic to select the action leading
to the expected minimum reward. The more actions in the action space, the
more samples are needed to guarantee the convergence of the bandits algorithm
towards optimal actions. Moreover, Table 3 showed that the spreads between
(µa, s)a∈A are rather small, comprised between 0.01 and 0.2, in front of standard
deviations of (Pa, s)a∈A, noted (σa, s)a∈A, that were measured around 0.1− 0.3
across public series.
In order to mitigate identification issues, five actions among the best performing
pairs (g, k) across the competition’s public series are selected to build action set
A:

A = {(count, 1), (count, 5), (countdual, 2), (binary, 3), (dual, 3)} (4)

4.2 Algorithms

To find the best exploration-exploitation tradeoff, two bandits algorithms, Thomp-
son sampling [Rus+20] and UCB2 [ACF02] are evaluated on public instances se-
ries. For Thompson sampling, we make the simplifying assumption that (Pa, s)a∈A
are normal distributions with unknown means (µa, s)a∈A and fixed standard de-
viation σa, s = σ = 0.2, the approximate value measured across public series.
Thompson sampling algorithm draws samples from prior distributionsN (µ̂a, σ̂a)
corresponding to each action and selects the action associated with the min-
imum sampled value. Then, it collects a reward r, which corresponds to the
performance obtained by the chosen algorithm on the instance, and performs
a bayesian update of µ̂a and σ̂a. UCB2 on the other hand, does not require to
make any additional assumption on Pa, s. It selects the action minimizing the
sum x̄a + ea, ra , with x̄a the empirical mean of rewards associated with action a
and ea, ra a measure of the exploration rate of action a. UCB2 has the advan-
tage to be deterministic, its performance are reproducible while performances
obtained by Thompson sampling must be averaged over a large number of runs.

8 P. Strang et al.

4.3 Convergence

Convergence tests of online bandits algorithms are performed on obj series 2 in-
stances. In order to assess the robustness of the convergence, results are averaged
over 10,000 runs. Instance series are shuffled before every run, so that instances
are never solved in the same order. Also, it should be specified that computa-
tional results from Section 3 are reused in this section and the next. In fact
rewards are generated from the performance scores computed during the eval-
uation of influence branching: there is no further branch-and-bound tree being
built at this point.

Fig. 1. Convergence comparison between Thompson sampling and UCB2. Results of
10,000 on shuffled obj series 2 are aggregated.

UCB2 and Thompson sampling achieve very similar performance in terms of
solving time across public series. However, as shown in Fig. 1, Thompson sam-
pling achieves better convergence towards optimal action count 5 than UCB2
over 50 iterations on obj series 2. This behaviour can be observed on every
series. The evaluation metric described in (3) rewards submissions improving
solving performance continuously over submission simply minimizing average
performance, Thompson sampling is thus prefered over UCB2 for the implemen-
tation of our final solution.
Table 4 highlights the convergence performances of Thompson sampling across
all public series averaged on 1000 runs. Once again, instance series are shuffled
before every run. Convergence score is defined by:

CS =

∑50
i=1 µi, s(ai)− µi, s(a0)∑50
i=1 µi, s(a∗s)− µi, s(a0)

(5)

with µi, s(ai) − µi, s(a0) the expected speed up of action ai compared to SCIP
and µi, s(a

∗
s)− µi, s(a0) the speed up obtained by a theoretical oracle. For every

Influence branching for learning to solve mixed integer programs online 9

series, a convergence score of at least 60 % is reached. Consequently, on public
series the average speed up achieved by our bandits algorithm is superior to
half of the theoretical speed up obtained by an oracle performing the series’
associated optimal action at every step.

Series Convergence score

bnd series 1 72%
bnd series 2 65%
obj series 1 75%
obj series 2 66%
rhs series 1 64%
rhs series 2 72%

rhs obj series 1 74%

Table 4. Convergence score of Thompson sampling on MIPcc23 public instances series.

5 MIPcc23 computational results

Table 5 gathers measures of fs, i computed across every public series, includ-
ing series with varying constraint matrix coefficients. Results are averaged over
2,000 runs with varying seed. The performance breakdown in terms of reltime,
dual gap, nofeas and tree size can be found in Appendix B. Despite the fact
that Thompson sampling converges towards optimal action, we don’t observe
better average performance on instances from the fifth batch. However, given
the limited number of samples available, it is not sufficient to conclude that our
solution is underfitting. This could result from the instance distribution of public
series, for example from a concentration of harder instances in the last batches.
Further discussion is provided in Section 6.
Table 6 highlights the speed up obtained by our solution over SCIP across public
series. The ”easy” instance series rhs 2 series is the only series where no speed
up is achieved. This does not come as a surprise, as [Eth21] showed that influ-
ence branching reduces the tree size of instances with large associated B&B trees,
while the size from rhs 2 series instances’ trees never exceeds a few dozen nodes.
Our solution obtains good speed up performance on bnd series 1, bnd series 2,
obj series 1, obj series 2, rhs series 1 and mat rhs bnd obj rhs series 1, with an
average score reduction located between -0.02 and -0.06. By comparison, [Chm+22]
achieves a 4% speed up over SCIP only on instances taking more than 1000 sec-
onds to solve, while training over 175 instances. This highlights the capacity of
influence branching to leverage part of the MIP instance structure to perform
efficient variable selection near the root node. Turning to rhs obj series 1 and
mat series 1, the speed up obtained may turn out to be more significant than
it appears, for the average score improvement corresponds to a reduction of the

10 P. Strang et al.

Average fs, i scores 1-50 1-10 11-20 21-30 31-40 41-50

bnd series 1 0.992± 0.009 1.036 1.033 0.947 1.016 0.930
bnd series 2 0.881± 0.020 0.928 0.850 0.853 0.858 0.917
obj series 1 0.895± 0.006 0.679 0.809 0.984 1.000 1.002
obj series 2 0.891± 0.022 0.847 1.018 0.825 0.859 0.910
rhs series 1 0.875± 0.027 0.810 0.865 0.839 0.906 0.954
rhs series 2 1.004± 0.0001 1.004 1.004 1.004 1.004 1.003

rhs obj series 1 1.015± 0.006 1.031 1.033 1.005 1.002 1.003
mat series 1 1.050± 0.013 1.004 1.044 1.074 1.068 1.087

mat rhs bnd obj series 1 0.677± 0.021 0.768 0.707 0.660 0.538 0.714

Table 5. Average fs, i results. Instances are solved in the order of the competition
dataset. Results are averaged over 2,000 runs, with varying seed. As a reminder, fs, i =
reltime+ gap+ nofeas.

average dual gap at termination, and not to a reduction of solving time. Com-
parison with other candidates scores is necessary to assess our performance on
these series.

Series Average fs, i Speed up compared to SCIP

bnd series 1 0.992± 0.009 −0.031 ± 0.009
bnd series 2 0.881± 0.020 −0.037 ± 0.020
obj series 1 0.895± 0.006 −0.022 ± 0.006
obj series 2 0.891± 0.022 −0.052 ± 0.022
rhs series 1 0.875± 0.027 −0.048 ± 0.027
rhs series 2 1.004± 0.0001 0.001± 0.0001

rhs obj series 1 1.015± 0.006 −0.005± 0.006
mat series 1 1.050± 0.013 −0.009± 0.013

mat rhs bnd obj series 1 0.677± 0.021 −0.061 ± 0.021

Table 6. Averaged speed up obtained across public series. Results are averaged over
2,000 runs, with varying seed.

6 Perspectives

Learning to solve MIP instances online is a challenging task. Adopting a bandits
framework, this work proposes to learn online the optimal setting of influence
branching among five preselected pairs (g, k) of parameters. Since these pairs
were selected according to their performance on public series, s ∈ S, it is legiti-
mate to wonder whether performances on hidden series, s′ ∈ S ′, will be compa-
rable. Two arguments can be made in favour of our approach.

Influence branching for learning to solve mixed integer programs online 11

First, as highlighted in Appendix A, suboptimal actions also lead to significant
average speed ups. Consequently, it is likely that for a hidden series sampled
from an unknown distribution Qs′ , one or several actions from A will lead to
an average performance speed up. Second, even in the case when none of the 5
actions of our action set leads to an average performance speed up, this does not
disqualify our approach for learning to solve MIPs online. In fact, owing to the
limited number of samples available for each series of the competition, we were
constrained to reduce the size of our action set to guarantee the convergence of
Thompson sampling. However, in a more general framework where possibly sev-
eral hundreds of instances sampled from the same distribution are solved online
[Chm+22], larger action sets could be built while preserving Thompson sam-
pling convergence properties. This would result in a better adaptability of our
solution to instance series sampled from unknown distributions (Qs′)s′∈S′ while
preserving performances obtained on instance series sampled from (Qs)s∈S .

References

[App+95] David Applegate et al. Finding cuts in the TSP (A preliminary
report). Tech. rep. Citeseer, 1995.

[ACF02] Peter Auer, Nicolò Cesa-Bianchi, and Paul Fischer. “Finite-time
Analysis of the Multiarmed Bandit Problem”. In: Machine Learn-
ing 47.2 (May 1, 2002), pp. 235–256. issn: 1573-0565. doi: 10.
1023/A:1013689704352. url: https://doi.org/10.1023/A:
1013689704352 (visited on 02/14/2023).

[AKM05] Tobias Achterberg, Thorsten Koch, and Alexander Martin. “Branch-
ing rules revisited”. In: Operations Research Letters 33.1 (Jan. 1,
2005), pp. 42–54. issn: 0167-6377. doi: 10.1016/j.orl.2004.04.
002. url: https://www.sciencedirect.com/science/article/
pii/S0167637704000501 (visited on 12/13/2022).

[RAD10] Emmanuel Rachelson, Ala Ben Abbes, and Sebastien Diemer. “Com-
bining mixed integer programming and supervised learning for fast
re-planning”. In: 2010 22nd IEEE International Conference on Tools
with Artificial Intelligence. Vol. 2. IEEE. 2010, pp. 63–70.

[Ost+11] James Ostrowski et al. “Orbital branching”. In: Mathematical Pro-
gramming 126 (2011), pp. 147–178.

[ALW14] Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel.
“A supervised machine learning approach to variable branching in
branch-and-bound”. In: In ecml. Citeseer, 2014, p. 11.

[Kha+16] Elias Khalil et al. “Learning to Branch in Mixed Integer Program-
ming”. In: Proceedings of the AAAI Conference on Artificial In-
telligence 30.1 (Feb. 21, 2016). Number: 1. issn: 2374-3468. doi:
10.1609/aaai.v30i1.10080. url: https://ojs.aaai.org/
index.php/AAAI/article/view/10080 (visited on 12/14/2022).

12 P. Strang et al.

[Lib+16] Giovanni Di Liberto et al. “DASH: Dynamic Approach for Switch-
ing Heuristics”. In: European Journal of Operational Research 248.3
(Feb. 1, 2016), pp. 943–953. issn: 0377-2217. doi: 10.1016/j.ejor.
2015.08.018. url: https://www.sciencedirect.com/science/
article/pii/S0377221715007559 (visited on 12/14/2022).

[Gas+19] Maxime Gasse et al. “Exact Combinatorial Optimization with Graph
Convolutional Neural Networks”. In: Advances in Neural Informa-
tion Processing Systems. Vol. 32. Curran Associates, Inc., 2019.
url: https://proceedings.neurips.cc/paper/2019/hash/
d14c2267d848abeb81fd590f371d39bd-Abstract.html (visited on
12/14/2022).

[Eth+20] Marc Etheve et al. “Reinforcement Learning for Variable Selection
in a Branch and Bound Algorithm”. In: Integration of Constraint
Programming, Artificial Intelligence, and Operations Research. Ed.
by Emmanuel Hebrard and Nysret Musliu. Lecture Notes in Com-
puter Science. Cham: Springer International Publishing, 2020, pp. 176–
185. isbn: 978-3-030-58942-4. doi: 10.1007/978-3-030-58942-
4_12.

[Rus+20] Daniel Russo et al. A Tutorial on Thompson Sampling. July 14,
2020. arXiv: 1707.02038[cs]. url: http://arxiv.org/abs/
1707.02038 (visited on 12/14/2022).

[TAF20] Yunhao Tang, Shipra Agrawal, and Yuri Faenza. “Reinforcement
Learning for Integer Programming: Learning to Cut”. In: Proceed-
ings of the 37th International Conference on Machine Learning.
International Conference on Machine Learning. ISSN: 2640-3498.
PMLR, Nov. 21, 2020, pp. 9367–9376. url: https://proceedings.
mlr.press/v119/tang20a.html (visited on 12/14/2022).

[Wol20] Laurence AWolsey. Integer programming. John Wiley & Sons, 2020.
[BLP21] Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. “Machine learn-

ing for combinatorial optimization: A methodological tour d’horizon”.
In: European Journal of Operational Research 290.2 (Apr. 16, 2021),
pp. 405–421. issn: 0377-2217. doi: 10.1016/j.ejor.2020.07.063.
url: https://www.sciencedirect.com/science/article/pii/
S0377221720306895 (visited on 12/14/2022).

[Bes+21] Ksenia Bestuzheva et al. The SCIP Optimization Suite 8.0. Tech-
nical Report. Optimization Online, Dec. 2021. url: http://www.
optimization-online.org/DB_HTML/2021/12/8728.html.

[Eth21] Marc Etheve. “Solving repeated optimization problems by Machine
Learning”. PhD thesis. HESAMUniversité, Dec. 3, 2021. url: https:
//theses.hal.science/tel-03675471 (visited on 12/08/2022).

[Hua+21] Lingying Huang et al. “Branch and Bound in Mixed Integer Linear
Programming Problems: A Survey of Techniques and Trends”. In:
(Nov. 5, 2021). doi: 10.48550/arXiv.2111.06257. url: https:
//arxiv.org/abs/2111.06257v1 (visited on 12/13/2022).

Influence branching for learning to solve mixed integer programs online 13

[Chm+22] Antonia Chmiela et al. “Online Learning for Scheduling MIP Heuris-
tics”. In: (2022). url: https://opus4.kobv.de/opus4- zib/
frontdoor/index/index/docId/8914 (visited on 12/21/2022).

[Hua+22] Zeren Huang et al. “Learning to select cuts for efficient mixed-
integer programming”. In: Pattern Recognition 123 (Mar. 1, 2022),
p. 108353. issn: 0031-3203. doi: 10.1016/j.patcog.2021.108353.
url: https://www.sciencedirect.com/science/article/pii/
S0031320321005331 (visited on 12/14/2022).

[Sca+22] Lara Scavuzzo et al. Learning to branch with Tree MDPs. Oct. 13,
2022. doi: 10.48550/arXiv.2205.11107. arXiv: 2205.11107[cs,
math]. url: http://arxiv.org/abs/2205.11107 (visited on
12/21/2022).

14 P. Strang et al.

A Influence branching average speed up potential on
public series

Influence Max
Performance

Speed
model depth up

count 1 0.980 -0.0424
binary 1 0.981 -0.0418
binary 3 0.983 -0.0392
count 3 0.990 -0.0324
dual 1 0.991 -0.0312
...

dual 6 1.031 +0.0084
countdual 4 1.032 +0.0090
countdual 6 1.041 +0.0190

Table 7. Sorted average performance of influence branching on bnd series 1 for each
pair (g, k).

Influence Max
Performance

Speed
model depth up

countdual 2 0.845 -0.0733
countdual 3 0.846 -0.0721
countdual 1 0.865 -0.0527

dual 1 0.869 -0.0492
count 1 0.870 -0.0482
...

dual 5 0.983 +0.0654
dual 6 0.996 +0.0774
dual 4 0.996 +0.0782

Table 8. Sorted average performance of influence branching on bnd series 2 for each
pair (g, k).

Influence branching for learning to solve mixed integer programs online 15

Influence Max
Performance

Speed
model depth up

binary 3 0.884 -0.0330
countdual 5 0.885 -0.0322

dual 5 0.886 -0.0311
dual 4 0.886 -0.0308
count 3 0.888 -0.0290
...

countdual 1 0.904 -0.0098
count 1 0.906 -0.0081
binary 1 0.907 -0.0070

Table 9. Sorted average performance of influence branching on obj series 1 for each
pair (g, k).

Influence Max
Performance

Speed
model depth up

count 1 0.835 -0.0872
binary 1 0.848 -0.0746

countdual 6 0.855 -0.0676
dual 5 0.858 -0.0643

countdual 3 0.863 -0.0598
...

binary 5 0.914 -0.0087
count 3 0.920 -0.00321
binary 5 0.926 +0.0031

Table 10. Sorted average performance of influence branching on rhs series 1 for each
pair (g, k).

Influence Max
Performance

Speed
model depth up

count 1 1.003 +0.0008
countdual 1 1.003 +0.0009
binary 1 1.003 +0.0010

countdual 2 1.004 +0.0010
dual 1 1.004 +0.0011
...

binary 6 1.004 +0.0016
count 6 1.004 +0.0016
binary 5 1.004 +0.0016

Table 11. Sorted average performance of influence branching on rhs series 2 for each
pair (g, k).

16 P. Strang et al.

Influence Max
Performance

Speed
model depth up

dual 3 1.012 -0.0084
count 8 1.013 -0.0078
binary 8 1.013 -0.078
binary 2 1.014 -0.0066
count 2 1.014 -0.0066
...

binary 4 1.027 +0.0065
countdual 2 1.032 +0.0011

dual 1 1.032 +0.0012

Table 12. Sorted average performance of influence branching on rhs obj series 1 for
each pair (g, k).

Influence Max
Performance

Speed
model depth up

count 1 1.020 -0.0364
countdual 1 1.030 -0.0270
binary 1 1.034 -0.0237
count 2 1.040 -0.0170
binary 2 1.041 -0.0162

...
dual 5 1.110 +0.0540
dual 6 1.226 +0.0656

countdual 6 1.140 +0.0831

Table 13. Sorted average performance of influence branching on mat series 1 for
each pair (g, k).

Influence Max
Performance

Speed
model depth up

dual 3 0.643 -0.0957
dual 2 0.653 -0.0852
count 1 0.659 -0.0796
count 2 0.664 -0.0745

countdual 3 0.670 -0.0679
...

count 6 0.726 -0.0129
countdual 6 0.730 -0.0083
count 5 0.745 +0.0063

Table 14. Sorted average performance of influence branching on mat rhs bnd obj
series 1 for each pair (g, k).

Influence branching for learning to solve mixed integer programs online 17

B Performance breakdown on public series

Average tree size 1-50 1-10 11-20 21-30 31-40 41-50

bnd series 1 7449± 216 7222 6832 9550 7277 6364
bnd series 2 10346± 369 10355 10138 10208 10586 10442
obj series 1 245255± 2825 181684 228534 290934 275192 249931
obj series 2 87956± 2077 99270 85366 88066 81301 85774
rhs series 1 22143± 999 17996 21930 25537 20679 24571
rhs series 2 37± 1 43 42 14 38 48

rhs obj series 1 587± 40 498 225 569 899 741
mat series 1 9084± 295 8902 9294 9384 8850 8986

mat rhs bnd obj series 1 3332± 129 3711 3632 3198 2053 4066

Table 15. Tree size results. Instances are solved in the order of the competition
dataset. Results are averaged over 2,000 runs, with varying seed.

Average reltime 1-50 1-10 11-20 21-30 31-40 41-50

bnd series 1 0.949± 0.009 0.980 0.992 0.914 0.965 0.895
bnd series 2 0.842± 0.019 0.884 0.817 0.811 0.824 0.879
obj series 1 0.895± 0.006 0.676 0.815 0.984 1.000 1.000
obj series 2 0.802± 0.014 0.822 0.848 0.777 0.741 0.823
rhs series 1 0.874± 0.029 0.805 0.862 0.841 0.913 0.949
rhs series 2 1.000± 0.000 1.000 1.000 1.000 1.000 1.000

rhs obj series 1 0.998± 0.001 0.988 1.000 1.000 1.000 1.000
mat series 1 0.971± 0.008 0.947 0.971 0.968 0.977 0.996

mat rhs bnd obj series 1 0.677± 0.021 0.768 0.707 0.660 0.538 0.714

Table 16. reltime results. Instances are solved in the order of the competition dataset.
Results are averaged over 2,000 runs, with varying seed.

18 P. Strang et al.

Average dual gap 1-50 1-10 11-20 21-30 31-40 41-50

bnd series 1 0.045± 0.002 0.057 0.042 0.039 0.050 0.038
bnd series 2 0.036± 0.004 0.048 0.034 0.036 0.021 0.039
obj series 1 0.001± 0.000 0.000 0.000 0.001 0.001 0.002
obj series 2 0.095± 0.013 0.029 0.175 0.046 0.129 0.097
rhs series 1 0.001± 0.000 0.000 0.000 0.000 0.001 0.001
rhs series 2 0.003± 0.0001 0.003 0.003 0.003 0.003 0.003

rhs obj series 1 0.017± 0.006 0.039 0.038 0.005 0.002 0.003
mat series 1 0.075± 0.007 0.053 0.071 0.073 0.084 0.094

mat rhs bnd obj series 1 0.006± 0.003 0.020 0.001 0.001 0.002 0.004

Table 17. dual gap results. Instances are solved in the order of the competition dataset.
Results are averaged over 2,000 runs, with varying seed.

Average nofeas 1-50 1-10 11-20 21-30 31-40 41-50

bnd series 1 0.000± 0.000 0.000 0.000 0.000 0.000 0.000
bnd series 2 0.000± 0.000 0.000 0.000 0.000 0.000 0.000
obj series 1 0.000± 0.000 0.000 0.000 0.000 0.000 1.002
obj series 2 0.000± 0.000 0.000 0.000 0.000 0.000 0.000
rhs series 1 0.000± 0.000 0.000 0.000 0.000 0.000 0.000
rhs series 2 0.000± 0.000 0.000 0.000 0.000 0.000 0.000

rhs obj series 1 0.000± 0.000 0.000 0.000 0.000 0.000 0.000
mat series 1 0.000± 0.000 0.000 0.000 0.000 0.000 0.000

mat rhs bnd obj series 1 0.000± 0.000 0.000 0.000 0.000 0.000 0.000

Table 18. nofeas results. Instances are solved in the order of the competition dataset.
Results are averaged over 2,000 runs, with varying seed.

